Time and Dose Dependence of Pluronic Bioactivity in Hyperthermia-Induced Tumor Cell Death

Author:

Krupka Tianyi M.1,Dremann David1,Exner Agata A.1

Affiliation:

1. Department of Radiology and Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio 44106

Abstract

Pluronic block copolymers have been shown to sensitize cancer cells resulting in an increased activity of antineoplastic agents. In the current study we examined a new application of Pluronic bioactivity in potentiating hyperthermia-induced cancer cell injury. DHD/K12/TRb rat adenocarcinoma cells were exposed to low-grade hyperthermia at 43°C with or without Pluronic P85 or Pluronic L61. A range of Pluronic doses, pre-exposure and heat exposure durations were investigated, and the test conditions were optimized. Treatment efficacy was assessed by measurement of intracellular ATP and mitochondrial dehydrogenase activity. Both P85 and L61 in synergy with heat reduced cell viability appreciably compared to either heat or Pluronic alone. Under optimal conditions, P85 (10 mg/ml, 240 mins) combined with 15 mins heat reduced intracellular ATP to 60.1 ± 3.5% of control, while heat alone and P85 without heat caused a negligible decrease in ATP of 1.2% and 3.8%, respectively. Similarly, cells receiving 120 mins pre-exposure of L61 (0.3 mg/ml) showed reduction in intracellular ATP to 14.1 ± 2.1% of control. Again, heat or L61 pre-exposure alone caused a minor decrease in levels of intracellular ATP (1.5% and 4.4%, respectively). Comparable results were observed when viability was assessed by mitochondrial enzyme activity. Survival studies confirmed that the loss of viability translates to a long-term reduction in proliferative activity, particularly for L61 treated cells. Based on these results, we conclude that Pluronic is effective in improving hyperthermic cancer treatment in vitro by potentiating heat-induced cytotoxicity in a concentration and time dependent manner.

Publisher

SAGE Publications

Subject

General Biochemistry, Genetics and Molecular Biology

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3