Pyrin and ASC Co-Localize to Cellular Sites that Are Rich in Polymerizing Actin

Author:

Waite Andrea L.1,Schaner Philip1,Hu Chunbo1,Richards Neil1,Balci-Peynircioglu Banu1,Hong Arthur1,Fox Michelle1,Gumucio Deborah L.1

Affiliation:

1. University of Michigan, Department of Cell and Developmental Biology, Ann Arbor, Michigan 48109-2200; University of Alabama at Birmingham, Division of Radiology/Oncology, Birmingham, Alabama 35294; Hacettepe University, Faculty of Medicine, Department of Medical Biology, Ankara, 06100 Turkey

Abstract

Familial Mediterranean fever (FMF) is an autoinflammatory disease caused by mutations in the MEFV locus, which encodes the protein pyrin. While it is known that pyrin is expressed in myeloid cells and several fibroblastic cell types, the exact function of pyrin in these cells and the mechanism underlying the pathological effect of pyrin mutations have yet to be revealed. Here, we document that in migrating human monocytes, pyrin protein is dramatically polarized at the leading edge, where it co-localizes with polymerizing actin. ASC (Apoptosis-associated Speck protein with CARD domain), a known pyrin-interacting protein and a critical component of the inflamma-some, is also located at the leading edge in migrating monocytes. Similarly, both pyrin and ASC concentrate in dynamically polymerizing actin-rich tails generated by Listeria monocytogenes. Pyrin’s B-box and coiled-coil region is required for its association with Listeria tails. Pyrin also binds, with low affinity and via the same domains, to actin, VASP, and Arp3. Though disease-causing mutations in pyrin do not appear to alter its localization to the leading edge or to Listeria rocket tails, they could potentially have important functional consequences in the context of processes such as migration and cell synapse formation. The co-localization of pyrin and ASC together at such sites may provide an important link between cytoskeletal signaling and inflammasome function.

Publisher

SAGE Publications

Subject

General Biochemistry, Genetics and Molecular Biology

Cited by 66 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3