Author:
Park You-Jung,Ryu Young-In,Choi Myung-Kyun,Kim Kyung-Sub,Kang Seung-Kyun
Abstract
Biodegradable electronics have revolutionized the field of medical devices by offering inherent advantages such as natural disintegration after a useful functional period, thereby eliminating the need for removal surgery. This paradigm shift addresses challenges with long-term implantation, the risks of secondary surgeries, and potential complications, offering a safer and more patient-friendly approach to temporary implantable devices. This review delves into the dissolution kinetics of materials and strategies for lifetime control providing a comprehensive overview of recent advancements in biodegradable electronics. Understanding the kinetics is crucial for meeting the required functional lifetime for implantable medical applications, which varies based on application scope and target diseases. The dissolution kinetics of silicon and biodegradable metals form the core of the discussion, focusing on recent studies aimed at controlling the dissolution rate and enhancing properties. The exploration extends to ideas for accelerating material degradation or initiating on-demand degradation in biodegradable electronics after stable function. Additionally, the compilation of encapsulation layer materials and strategies enhances understanding of how to improve the stable operation time of devices. Emphasis is placed on efforts to adjust the lifetime of biodegradable electronics, particularly in medical applications.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献