A stretchable all-nanofiber iontronic pressure sensor

Author:

Wu Yigen,Dong Shuai,Li Xiaojuan,Wen Liguo,Shen Hongwei,Li Mengjiao,Liu Xin,Zhang Yang,Zeng Guolong,Zheng Jianyi,Wu Dezhi

Abstract

Flexible pressure sensors with high stretchability, sensitivity, and stability are undoubtedly urgently required for potential applications in intelligent soft robots, human-machine interaction, health monitoring, and other fields. However, most current flexible pressure sensors are unable to endure large deformation and are prone to performance degradation or even failure during frequent operation due to their multilayered structures. Here, we propose a stretchable all-nanofiber iontronic pressure sensor that is composed of ionic nanofiber membranes used as dielectric layers and liquid metal used as electrodes. This sensor exhibits a high sensitivity of 1.08 kPa-1 over a wide range of 0-300 kPa, with a fast response-relaxation time of about 18/22 ms and excellent stability. The high sensitivity comes from the electric double layer formed at the ionic film/electrode interface, while high stretchability and stability are enabled by in-situ encapsulated all-nanofiber structures. As a proof of concept, a prototype sensor array is integrated into a soft pneumatic gripper, demonstrating its capability of pressure perception and object recognition during the grasping process. Thus, the scheme provides another excellent strategy to fabricate stretchable pressure sensors with superb performance in terms of high stretchability, sensitivity, and stability.

Publisher

OAE Publishing Inc.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3