Applications of flexible and stretchable three-dimensional structures for soft electronics

Author:

Kim Jang Hwan,Lee Su Eon,Kim Bong Hoon

Abstract

The development of devices that can be mechanically deformed in geometrical layouts, such as flexible/stretchable devices, is important for various applications. Conventional flexible/stretchable devices have been demonstrated using two-dimensional (2D) geometry, resulting in dimensional constraints on device operations and functionality limitations. Accordingly, expanding the dimensions in which such devices can operate and acquiring unique functionality that is difficult to implement in 2D planar structures remain challenging. As a solution, the development of a flexible/stretchable device embedding a three-dimensional (3D) structure fabricated through the precise control of a 2D structure or direct construction has been attracting significant attention. Because of a significant amount of effort, several 3D material systems with distinctive engineering properties, including electrical, optical, thermal, and mechanical properties, which are difficult to occur in nature or to obtain in usual 2D material systems, have been demonstrated. Furthermore, 3D advanced material systems with flexibility and stretchability can provide additional options for developing devices with various form factors. In this review, novel fabrication methods and unprecedented physical properties of flexible/stretchable 3D material systems are reviewed through multiple application cases. In addition, we summarized the latest advances and trends in innovative applications implemented through the introduction of advanced 3D systems in various fields, including microelectromechanical systems, optoelectronics, energy devices, biomedical devices, sensors, actuators, metamaterials, and microfluidic systems.

Publisher

OAE Publishing Inc.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3