Stretchable synaptic transistors based on the field effect for flexible neuromorphic electronics

Author:

Wang Xiumei,Qi Longqi,Yang Huihuang,Rao Yuan,Chen Huipeng

Abstract

Using flexible neuromorphic electronics that emulate biological neuronal systems is an innovative approach for facilitating the implementation of next-generation artificial intelligence devices, including wearable computers, soft robotics devices, and neuroprosthetics. Stretchable synaptic transistors based on field-effect transistors (FETs), which have functions and structures resembling those of biological synapses, are promising technological devices in flexible neuromorphic electronics owing to their high flexibility, excellent biocompatibility, and easy processability. However, obtaining stretchable synaptic FETs with various synaptic characteristics and good stretching stabilities is challenging. Significant efforts to produce stretchable synaptic FETs have been undertaken; and remarkable advances in materials, fabrication processes, and applications have been achieved. From this perspective, we discuss the requirements for neuromorphic devices in flexible neuromorphic electronics and the advantages of stretchable synaptic FETs. Moreover, representative methods used to implement stretchable synaptic transistors, including the structural design and development of intrinsically stretchable devices, are introduced. Additionally, the application of stretchable synaptic transistors in artificial sensory systems such as light, tactile, and multisensory artificial nervous systems is also discussed. Finally, we highlight the possible challenges in implementing and using stretchable synaptic transistors, propose solutions to overcome the current limitations of these devices, and suggest future research directions.

Publisher

OAE Publishing Inc.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3