Flow cytometry for extracellular vesicle characterization in COVID-19 and post-acute sequelae of SARS-CoV-2 infection

Author:

Fanelli MarialauraORCID,Petrone VitaORCID,Chirico RossellaORCID,Radu Claudia MariaORCID,Minutolo AntonellaORCID,Matteucci ClaudiaORCID

Abstract

Infection with SARS-CoV-2, the virus responsible for COVID-19 diseases, can impact different tissues and induce significant cellular alterations. The production of extracellular vesicles (EVs), which are physiologically involved in cell communication, is also altered during COVID-19, along with the dysfunction of cytoplasmic organelles. Since circulating EVs reflect the state of their cells of origin, they represent valuable tools for monitoring pathological conditions. Despite challenges in detecting EVs due to their size and specific cellular compartment origin using different methodologies, flow cytometry has proven to be an effective method for assessing the role of EVs in COVID-19. This review summarizes the involvement of plasmatic EVs in COVID-19 patients and individuals with Long COVID (LC) affected by post-acute sequelae of SARS-CoV-2 infection (PASC), highlighting their dual role in exerting both pro- and antiviral effects. We also emphasize how flow cytometry, with its multiparametric approach, can be employed to characterize circulating EVs, particularly in infectious diseases such as COVID-19, and suggest their potential role in chronic impairments during post-infection.

Publisher

OAE Publishing Inc.

Reference138 articles.

1. Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P. General principles of cell communication. In: Molecular Biology of the Cell. New York: Garland Science; 2002. Available from: https://www.ncbi.nlm.nih.gov/books/NBK26813/. [Last accessed on 8 Aug 2024]

2. Extracellular vesicles: masters of intercellular communication and potential clinical interventions

3. Exosomes and microvesicles in normal physiology, pathophysiology, and renal diseases

4. Membrane vesicles, current state-of-the-art: emerging role of extracellular vesicles

5. Minimal information for studies of extracellular vesicles (MISEV2023): From basic to advanced approaches

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3