A case study in smart manufacturing: predictive analysis of cure cycle results for a composite component

Author:

Bangerter Micaela Lucia,Fenza Giuseppe,Gallo Mariacristina,Volpe Alberto,Caminale Gianfranco,Gallo Nicola,Leone Fabrizio

Abstract

Aim: This work proposes a workflow monitoring sensor observations over time to identify and predict relevant changes or anomalies in the cure cycle (CC) industrial process. CC is a procedure developed in an autoclave consisting of applying high temperatures to provide composite materials. Knowing anomalies in advance could improve efficiency and avoid product discard due to poor quality, benefiting sustainability and the environment. Methods: The proposed workflow exploits machine learning techniques for monitoring and early validating the CC process according to the time-temperature constraints in a real industrial case study. It uses CC's data produced by the thermocouples in the autoclave along the cycle to train an LSTM model. Fast Low-cost Online Semantic Segmentation algorithm is used for better characterizing the time series of temperature. The final objective is predicting future temperatures minute by minute to forecast if the cure will satisfy the constraints of quality control or raise the alerts for eventually recovering the process. Results: Experimentation, conducted on 142 time series (of 550 measurements, on average), shows that the framework identifies invalid CCs with significant precision and recall values after the first 2 hours of the process. Conclusion: By acting as an early-alerting system for the quality control office, the proposal aims to reduce defect rates and resource usage, bringing positive environmental impacts. Moreover, the framework could be adapted to other manufacturing targets by adopting specific datasets and tuning thresholds.

Funder

Ministero dell��Istruzione, dell��University della Ricerca

Publisher

OAE Publishing Inc.

Subject

Management Science and Operations Research,Mechanical Engineering,Energy Engineering and Power Technology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3