Towards green machine learning: challenges, opportunities, and developments

Author:

Pedrycz Witold

Abstract

Machine Learning has assumed a prominent position in the plethora of design and analysis of intelligent systems. Learning is the holy grail of Machine Learning, and with rapidly growing complexity and the size of the constructed networks (the trend which is profoundly visible in deep learning architectures), the overwhelming computing is staggering. The return on investment clearly diminishes: even a very limited improvement in performance (commonly expressed as a classification rate or prediction error) does call for intensive computing because of learning a large number of parameters. The recent developments in green Artificial Intelligence (or better to say, green Machine Learning) has identified and emphasized a genuine need for a holistic multicriteria assessment of the design practices of Machine Learning architectures by involving computing overhead, interpretability, robustness, and identifying sound trade-offs present in these problems. We discuss a realization of green Machine Learning and advocate how Granular Computing contributes to the augmentation of the existing technology. In particular, some paradigms that exhibit a sound potential to support the sustainability of Machine Learning such as federated learning and transfer learning, are identified, critically evaluated, and cast into some general perspective.

Publisher

OAE Publishing Inc.

Subject

Management Science and Operations Research,Mechanical Engineering,Energy Engineering and Power Technology

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3