Satellite sensors as an emerging technique for monitoring macro- and microplastics in aquatic ecosystems

Author:

Mukonza Sabastian Simbarashe,Chiang Jie-Lun

Abstract

Plastic pollution in aquatic ecosystems has been identified as a growing global water pollution threat that is negatively impacting water quality and, as a result, affecting the health of humans, aquatic animals, and wildlife. Therefore, it presents a global environmental catastrophe that requires immediate attention. Plastics in water (in their different forms, macro-, meso-, micro-, and nanoplastics) are contaminants of emerging concerns that have since evolved to be a global environmental threat. Despite increasing levels of pollution in aquatic ecosystems, there are insufficient monitoring data to evaluate the extent of the catastrophe. Traditional methods of monitoring plastics in water are constrained by high sampling costs, intensive labor, and limited temporal and spatial coverage, which results in limited monitoring data. Thus, insufficient monitoring data limit our understanding of the true quantities and persistence of plastic particles in aquatic ecosystems, as well as the extent to which they impact the aquatic environment. There is increasing availability of free big geospatial data (amounting to petabytes/day) from satellite sensors for potentially monitoring plastics. This provides a possible solution to these challenges by minimizing the fieldwork required and therefore reducing the costs and sampling time. The study purpose of this review is to analyze advances in emerging technology such as the use of satellite sensors to monitor the occurrence of macro- and microplastics in freshwater, ultimately aimed at creating new operational monitoring solutions. This review: (1) examines the literature to identify trends, accomplishments, and limitations of using satellite data to monitor plastics in water; (2) identifies and compares traditional, and machine and deep learning satellite image classification methods for monitoring plastics in water; and (3) identifies research gaps and summarizes future perspectives and recommendations to improve monitoring methods.

Funder

National Science and Technology Council of Taiwan

Publisher

OAE Publishing Inc.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3