Glucose photorefinery for sustainable hydrogen and value-added chemicals coproduction

Author:

Sun Zhe,Zhao HengORCID,Yu Xinti,Hu JinguangORCID,Chen ZhangxinORCID

Abstract

As a naturally occurring and stable energy supply, biomass will be the leading renewable energy in the future, and its high-value application will help promote the realization of carbon neutrality. Glucose, as the basic unit of lignocellulosic biomass, has been widely investigated as the feedstock to produce various value-added chemicals. Compared to the traditional glucose valorization platforms, such as thermal catalysis and biological fermentation, solar-driven photocatalysis holds the advantages in mild reaction conditions and controllable reaction kinetics, and it is emerging as a sustainable and efficient technology for glucose conversion. With the rational design of the photocatalysts, glucose could be selectively converted into specified chemicals via oriented bond cleavage along with the sustainable generation of hydrogen at the same time, which is the so-called glucose photorefinery process. This present review introduces the general principles and latest progress in glucose photorefinery. The rational design of bifunctional photocatalysts to achieve extended light absorption, efficient charge separation, and favorable surface reaction is also introduced. The oriented breakage of the chemical bonds in glucose molecules to produce different chemicals on different active sites is highlighted. Finally, challenges and perspectives on glucose photorefinery to achieve further efficiency and more fruitful reaction pathways are proposed. This present review is believed to provide guidance for the biomass valorization by mild photocatalysis to simultaneously produce sustainable fuels and chemicals with the rational design of dually functional photocatalysts.

Publisher

OAE Publishing Inc.

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3