Revealing the dynamic formation mechanism of porous Mo2C: an in-situ TEM study

Author:

Wang Yongzhao,Niu YimingORCID,Pu Yinghui,Li Shiyan,Liu Yuefeng,Zhang BingsenORCID

Abstract

In-situ transmission electron microscopy (TEM) enables direct observation of the micromorphology and microstructure evolution of catalysts in the chemical atmosphere. Studying the structural evolution during the formation of molybdenum carbide using in-situ TEM is helpful for the preparation of high-performance carbide catalysts. Herein, the formation mechanism of porous Mo2C from MoO2 nanoparticles (NPs) was studied by in-situ TEM. The formation of Mo2C was induced by the defects of MoO2, and the formed Mo2C facilitated the carbonization of neighboring MoO2 NPs. The growth rate of Mo2C between MoO2 NPs was slower compared to that within a single MoO2 NP. In addition, the formation and growth of pores in Mo2C were also studied; the pores grew radially during the early stages from the nucleation sites and later grew branched and curved. As Mo2C underwent competitive growth, the pores transitioned from straight to curved. Eventually, during prolonged carbonization at high temperatures, Mo2C underwent sintering.

Publisher

OAE Publishing Inc.

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3