CoFe2O4 nanoparticles as a bifunctional agent on activated porous carbon for battery-type asymmetrical supercapacitor

Author:

Qu Qiang,Chen Zhuo,Sun Guo-Tao,Qiu Ling,Zhu Ming-QiangORCID

Abstract

The low performance of electrode materials is the main obstacle limiting the development of the supercapacitor industry, which can be solved by doping cobalt ferrate nanoparticles (NPs) with carbon materials. Herein, the composites of CoFe2O4 based on activated carbon (AC) were successfully prepared using a one-step solvothermal method and subsequently applied in anodes of battery-type asymmetrical supercapacitors. The effect of solvothermal temperature and heating time on the composite characteristic was systematically evaluated. The electrochemical analysis in the three-electrode system revealed that modified activated carbon heated at 140 °C for 24 h (140MAC24) displayed excellent specific capacitance of 571.36 F/g at the current density of 0.2 A/g due to the synergistic effect of the double-layer and faradic capacitance. Moreover, iron and cobalt elements in CoFe2O4 could change into the oxide form to accelerate charge in potential range window of -1.0 to -0.2 V and discharge from -0.2 to 0.2 V, respectively. Meanwhile, the result of assessing economic feasibility suggested the splendid availability of 140MAC24 electrodes. Additionally, the assembled supercapacitor displayed the outstanding specific capacitance of 171.31 F/g in the potential window of 1.8 V, energy density of 43.5 Wh/kg at the current density of 0.2 A/g, and capacitance retention rate of 82.49% after 10,000 cycles. The excellent electrochemical properties demonstrated that CoFe2O4 could be used as a bifunctional agent for enhancing supercapacitive performance.

Publisher

OAE Publishing Inc.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3