Topological transformation of magnetic hopfion in confined geometries

Author:

Gao Yang,Li Shuang,Zhao Yuelei,Zhu Zhaozhao,Cao Linyu,Xu Jiawang,Zhou Yan,Wang Shouguo

Abstract

Three-dimensional (3D) topological magnetic structures have attracted enormous interest due to their exceptional spatial structures and intriguing physics. Hopfions, characterized by the Hopf index, are 3D spin textures that emerged as closed twisted skyrmion strings. A comprehensive understanding of magnetic structural transitions within nanostructures is crucial for their applications in spintronics devices. Despite the demonstration of stabilization and current-driven dynamics of hopfion, their behavior in geometric confinement has remained unexplored. Here, we investigate the transformation between hopfions and torons in various nanostructures using micromagnetic simulations. By tailoring the axial ratio of elliptical nanodisks, the elliptical hopfion is found to be transformed into a toron structure. Moreover, the current-driven topological transformation between hopfion and toron has also been realized in finite-sized nanostripes and stepped nanostructures. This deformation and transformation arise from the repulsive potential of the boundaries or edges. To connect real-space observations and 3D topological spin configurations, we simulate the Lorentz transmission electron microscope images of the aforementioned magnetic structures. This study, uncovering the dynamics and transformation of hopfions, will invigorate 3D magnetic structures-based memory and logic devices.

Publisher

OAE Publishing Inc.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3