On the thermal expansion of the tetragonal phase of MAPbI3 and MAPbBr3

Author:

Schuck Götz,Többens Daniel M.,Schorr Susan

Abstract

Based on previously published research, the structural response of the tetragonal hybrid perovskite crystal structure of MAPbX3 [MA: [CH3NH3]+, methylammonium; X = I, Br] to thermal expansion is reviewed here. From an averaged crystal structure perspective, the tetragonal perovskite structure of MAPbI3 and MAPbBr3, based on diffraction data, shows apparent Pb-X bond length shortening and apparent shrinkage of the [PbX6] octahedra with increasing temperature. At the same time, these apparent observations, and hence the thermal expansion, are related to the progressive phase transformation towards the cubic structure, as the lattice parameters respond to a shear stress that couples to the order parameters, and this coupling is predicted by group theory and thus aims to explain precisely the apparent negative thermal expansion-like effects. A different picture emerges for the thermal expansion when considering the very localized structure, since neither a shortening of the Pb-X bond lengths nor a shrinking of the [PbX6] octahedra is observed with pair distribution function analysis, and the presence of orthorhombic short-range order in the tetragonal and cubic perovskite structures is assumed in published studies. The compared extended X-ray absorption fine structure studies, which also map the local structure and provide the “true” bond distance, show no lead-halide bond length shortening with temperature. The perpendicular mean square relative displacement has been determined. Therefore, a comparison of the tension and bond expansion effects in both perovskites can be made. In the orthorhombic phase of MAPbI3 and MAPbBr3, positive expansion and negative tension of the lead-halide bond are almost balanced. After transitioning to the tetragonal phase, the equilibrium shifts toward negative tension. This suggests that both hybrid perovskites have tighter lead-halide bonds and less rigid [PbX6] octahedra in the tetragonal phase than in the low temperature perovskite crystal structure.

Publisher

OAE Publishing Inc.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3