A molecular dynamics assisted insight on damping enhancement in carbon fiber reinforced polymer composites with oriented multilayer graphene oxide coatings

Author:

Zhang MuhanORCID,Yu Yalin,Li Li,Zhou Helezi,Gong Luyang,Zhou Huamin

Abstract

Fiber-reinforced polymer composites with high damping performance have been required in diverse applications. The interlayer slip characteristics of the graphene family offer a clear benefit in enhancing the damping performance of materials. In this study, an oriented graphene oxide (GO) structure was designed on the carbon fiber surface to enhance the damping capacity of the composites. The molecular dynamics method was proposed to investigate the damping mechanism of multilayer GO-reinforced polymer composites based on energy dissipation, which is consistent with the results revealed by dynamic mechanical analysis. Under a wide range of loading strain, vibration frequency, and temperature, GO induces a higher loss factor/lower quality factor of the composite materials. The visualization of the atomic displacement field demonstrates that the sliding of multilayer GO during vibration enhances the mutual friction among polymer segments, leading to a pronounced increase in the energy loss. Notably, substantial enhancements in damping properties were observed with thicker GO coatings. This is due to the fact that the uniformly distributed shear stresses are more likely to activate interlayer slip, and higher frictional forces consume more mechanical energy.

Publisher

OAE Publishing Inc.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3