Reduced dimensional ferroelectric domains and their characterization techniques

Author:

Jang Jinhyuk,Choi Si-Young

Abstract

Ferroelectricity is one of the most major physical phenomena in electronic devices due to its sustainable polarity in the absence of an external electric field and its switchability in response to external stimuli. In alignment with the industry trend towards increasingly integrated devices, research into smaller-sized ferroelectric materials becomes indispensable. In the pursuit of achieving the pinnacle of device miniaturization, recent studies have unveiled materials exhibiting sub-nanometric, unit cell-level domains. Concurrently, advances in transmission electron microscopy-based structural characterization techniques have been made, enabling in-depth analysis of the intricate properties of these miniaturized ferroelectric materials. This review highlights the structural mechanism of ferroelectricity in a reduced scale, as well as the recent advancements in electron microscopy techniques for characterizing miniaturized ferroelectric domains, particularly in the fields of in-situ biasing and atomic scale imaging. We believe that this work will provide structural insights for engineering and characterizing ferroelectrics for the design of downsized high-density memory devices at the quantum limit.

Publisher

OAE Publishing Inc.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3