Integrating resilience in the multi-hazard sustainable design of buildings

Author:

Bianchi SimonaORCID

Abstract

Recent natural disasters and climate change-induced extremes emphasize the urgent need to enhance the overall resilience of society by addressing the various hazards that buildings may face. Current design approaches recognize the need for integrated risk assessments, but studies primarily focus on existing buildings and single hazards, neglecting the impact of multiple hazards and resilience quantifications. However, it is crucial to consider multi-hazard scenarios and quantify economic, environmental, and resilience losses to pursue effective solutions from the early-stage design of both new buildings and retrofitting interventions. This paper presents a practical multi-criteria approach to support design decisions for enhanced safety, sustainability, and resilience of buildings against earthquakes and heatwaves. The proposed approach is applied to a commercial building with various seismic-resistant and energy-efficient facades. Non-linear seismic assessments are conducted to predict the potential impact concerning repair costs, carbon emissions, and the resilience loss at the design-level earthquake. Additionally, a whole life-cycle analysis and dynamic energy simulations are performed to calculate the financial and carbon losses resulting from power consumption and the ability of the building to maintain energy efficiency under extreme heat. Finally, the study employs a multi-matrix decision-making approach based on integrated economic, environmental, and resilience losses to guide the design selection. The results demonstrate that earthquake-resistant facades can significantly reduce financial losses by over 50%, with seismic resilience playing a crucial role in the final decision. This approach facilitates more effective investment decisions for building projects, enabling the quantification of the effectiveness of integrated strategies in reducing overall potential losses.

Publisher

OAE Publishing Inc.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3