Residual energy-based clustering in UAV-aided wireless sensor networks for surveillance and monitoring applications

Author:

Poudel Sabitri,Moh Sangman,Shen Jian

Abstract

Aim: Unmanned aerial vehicle (UAV)-aided wireless sensor networks (WSNs) are effectively used for surveillance, monitoring, and rescue applications in military and commercial domains. In UAV-aided WSNs (UWSNs), efficient data gathered from sensor nodes are desired to enhance network performance. However, communication between UAV and sensor nodes is challenging due to the high mobility of the UAV and a large number of sensor nodes. Clustering in UWSNs limits the number of sensor nodes communicating with the UAV, i.e., only the cluster head in a cluster can transmit the sensed data to the UAV, which reduces collision probability. Methods: In this paper, we propose a residual energy-based clustering algorithm for sensor-to-UAV communication in UWSNs. The cluster size and the number of sensor nodes in a cluster are determined on the basis of the residual energy of the sensor nodes. The performance of the proposed algorithm is evaluated by using the MATLAB simulator and then compared with that of the conventional clustering algorithm. Results: According to our extensive simulation results, the proposed clustering scheme significantly outperforms the conventional one in terms of network lifetime and data delivery ratio. Conclusion: Hence, through our studies and simulations, it can be assured that the network lifetime of UWSNs can be prolonged and the throughput of the network can also be elevated by controlling the early death of sensor nodes due to the uneven energy consumptions. We will come up with further analysis and validation of our work in the future.

Funder

National Research Foundation of Korea grant funded by the Korea government (MIST)

Publisher

OAE Publishing Inc.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3