Facial expression recognition using adapted residual based deep neural network

Author:

Bah Ibrahima,Xue Yu

Abstract

Emotion on our face can determine our feelings, mental state and can directly impact our decisions. Humans are subjected to undergo an emotional change in relation to their living environment and or at a present circumstance. These emotions can be anger, disgust, fear, sadness, happiness, surprise or neutral. Due to the intricacy and nuance of facial expressions and their relationship to emotions, accurate facial expression identification remains a difficult undertaking. As a result, we provide an end-to-end system that uses residual blocks to identify emotions and improve accuracy in this research field. After receiving a facial image, the framework returns its emotional state. The accuracy obtained on the test set of FERGIT dataset (an extension of the FER2013 dataset with 49300 images) was 75%. This proves the efficiency of the model in classifying facial emotions as this database poses a bunch of challenges such as imbalanced data, intraclass variance, and occlusion. To ensure the performance of our model, we also tested it on the CK+ database and its output accuracy was 97% on the test set.

Publisher

OAE Publishing Inc.

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3