A bimetallic-activated MnO2 self-assembly electrode with a dual heterojunction structure for high-performance rechargeable zinc-air batteries

Author:

Yin Zhengyu,He Rui,Xue Huaibin,Chen Jingjian,Wang Yue,Ye Xiaoxiao,Xu Nengneng,Qiao Jinli,Huang Haitao

Abstract

A major challenge in developing zinc-air batteries (ZABs) is to exploit suitable cathodes to efficiently accelerate the key electrocatalytic processes involved. Herein, a bifunctional oxygen catalytic self-supported MnO2-based electrode is designed that displays superior oxygen reduction and evolution reaction performance over noble metal electrodes with a total overpotential of 0.69 V. In addition, the as-synthesized NiCo2O4@MnO2/carbon nanotube (CNT)-Ni foam self-supported electrode can be directly used as an oxygen electrode without externally adding carbon or a binder and shows reasonable battery performance with a high peak power density of 226 mW cm-2 and a long-term charge-discharge cycling lifetime (5 mA for 160 h). As expected, the rapid oxygen catalytic intrinsic kinetics and high battery performance of the NiCo2O4@MnO2/CNTs-Ni foam electrode originates from the unique three-dimensional hierarchical structure, which effectively promotes mass transfer. Furthermore, the CNTs combined with Ni foam form a unique “meridian” conductive structure that enables rapid electron conduction. Finally, the abundant Mn3+ active sites activated by bimetallic ions shorten the oxygen catalytic reaction distance between the active sites and reactant and reduce the surface activity of MnO2 for the O, OH, and OOH species. This work not only offers a high-performance bifunctional self-supported electrode for ZABs but also opens new insights into the activation of Mn-based electrodes.

Funder

"Scientific and Technical Innovation Action Plan" Hong Kong, Macao and Taiwan Science & Technology Cooperation Project of Shanghai Science and Technology Committee

National Natural Science Foundation of China

Shanghai Sailing Program

Publisher

OAE Publishing Inc.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3