Author:
Yang Zhe,Zheng Chaoliang,Wei Zhicheng,Zhong Jianjian,Liu Huirong,Feng Jiameng,Li Jianling,Kang Feiyu
Abstract
Lithium-rich manganese-based cathode materials are expected to promote the commercialization of lithium-ion batteries to a new stage by virtue of their ultrahigh specific capacity and energy density advantages. However, they are still restricted by complex phase transitions and electrochemical performance degradation caused by labile anion charge compensation. A deep understanding of the electrochemical properties contained in their intrinsic structures and the key driving factors of structural deterioration during cycling are crucial to guide the preparation and optimization of lithium-rich materials. Considering recent progress, this review introduces the intrinsic properties of Li-rich manganese-based cathode materials from interatomic interactions to particle morphology at multiple scales in the spatial dimension. The charge compensation mechanism and energy band reorganization of the initial charge and discharge, the structural evolution during cycling and the electrochemical reaction kinetics of the materials are analyzed in the temporal dimension. Based on the relationship between structure and electrochemical performance, preparation methods and modification methods are introduced to guide and design cathode materials. Effective characterization methods for studying anion charge compensation behavior are also demonstrated. This review provides important guidance and suggestions for making full use of the high specific capacity in these materials derived from anion redox and the maintaining of its stability.
Funder
National Natural Science Foundation of China
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献