Advancements in two-dimensional covalent organic framework nanosheets for electrocatalytic energy conversion: current and future prospects

Author:

Cho Jin Hyuk,Kim Youngho,Yu Hak Ki,Kim Soo YoungORCID

Abstract

Humanity is confronting significant environmental issues due to rising energy demands and the unchecked use of fossil fuels. Thus, the strategic employment of sustainable and environmentally friendly energy sources is becoming increasingly vital. Additionally, addressing challenges, such as low reactivity, suboptimal energy efficiency, and restricted selectivity, requires the development of innovative catalysts. Two-dimensional (2D) covalent organic frameworks (COFs), known for their limitless structural versatility, are proving to be important materials in energy conversion applications. The exceptional properties of 2D COFs, including an organized arrangement resulting in well-defined active sites and π-π stacking interactions, enable breakthroughs in sustainable energy conversion applications. In this study, we comprehensively investigate universal synthesis methods and specific techniques, such as membrane-based deposition, liquid-phase intercalation, and polymerization. Furthermore, we demonstrate energy-conversion applications of 2D COFs as eco-friendly catalysts for electrochemical processes to promote sustainability and scalability by utilizing them in the hydrogen evolution reaction, oxygen evolution reaction, oxygen reduction reaction, and carbon dioxide reduction reaction. Additionally, we will explore methods for analyzing the physicochemical properties of precisely fabricated 2D COFs. Despite extensive research pertaining to 2D COFs, their practical industrial applications remain limited. Therefore, we propose various perspectives, including enhancing performance, improving synthesis methods, developing binder-free catalysts, expanding catalyst functionality, and advancing full-cell research, to achieve complete industrialization by leveraging their potential.

Publisher

OAE Publishing Inc.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3