Fluorine chemistry in lithium-ion and sodium-ion batteries

Author:

Pan Zibing,Chen Huaqi,Zeng Yubin,Ding Yan,Pu Xiangjun,Chen ZhongxueORCID

Abstract

As the peculiar element in the Periodic Table of Elements, fluorine gas owns the highest standard electrode potential of 2.87 V vs. F-, and a fluorine atom has the maximum electronegativity. Benefiting from the prominent property, fluorine plays an important role in the development of lithium-ion batteries (LIBs) and sodium-ion batteries (SIBs) in terms of cathode materials (transition metal fluorides, fluorinated polyanionic compounds), electrolytes, and interfaces. In cathode materials, the highly electronegative renders enhanced ionic character of transition metal fluorine bonds and correspondingly high working potential in electrolytes; fluorinated electrolytes possess good antioxidant ability and flame retardance, which can significantly improve the thermal safety of a battery. On an electrode-electrolyte interface, the fluorine-rich inorganic component (such as LiF and NaF) is essential for the formation of a robust and stable solid electrolyte interface on anodes. Despite the remarkable advances achieved in fluorinated cathodes, electrolytes, and interfaces, there is still a lack of comprehensive understanding of the function of fluorides in LIBs and SIBs. Accordingly, this review briefly summarized the recent progress of fluorine-based electrodes, electrolytes, and interfaces and highlighted the correlation between the composition, property, and function to reveal the fluorine chemistry in LIBs and SIBs. This review will provide guidance for the rational design and targeted regulation of fluorine-dominated high-performance electrode materials, functionalized electrolytes, and consolidated interfaces.

Publisher

OAE Publishing Inc.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3