Author:
Du Bowei,Wang Mingyue,Zhao Qing,Hu Xiaofei,Ding Shujiang
Abstract
Phase change materials (PCMs) are considered one of the most promising energy storage methods owing to their beneficial effects on a larger latent heat, smaller volume change, and easier controlling than other materials. PCMs are widely used in solar energy heating, industrial waste heat utilization, energy conservation in the construction industry, and other fields. To avoid leakage, phase separation, and volatile problems of PCMs, the encapsulation technique typically uses organic polymer materials as shell structures of microcapsules. Furthermore, using inorganic materials to enhance the thermal property of phase change microcapsules is a popular approach in recent research. Especially, graphene oxide (GO) with high thermal conductivity was used as a common thermal conducting additive to improve the thermal performance of phase change microcapsules. Due to its amphiphilic property, GO combined with PCM microcapsules can achieve a variety of nanostructures for thermal energy storage. In this paper, four aspects have been summarized: configuration of PCMs, methods of combining GO with phase change microcapsules, position and content of GO, and applications of PCM/GO microcapsules. This work attempts to discuss preparation methods and heat-conducting properties of the PCM/GO microcapsules, which helps to better promote the application-targeted design and greatly improve the thermal properties of PCM microcapsules for various applications.
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献