Challenges and prospects of Mg-air batteries: a review

Author:

Wang Yaru,Sun Yukun,Ren Wen,Zhang Duo,Yang Yang,Yang Jun,Wang Jiulin,Zeng Xiaoqin,NuLi Yanna

Abstract

Mg-air batteries, with their intrinsic advantages such as high theoretical volumetric energy density, low cost, and environmental friendliness, have attracted tremendous attention for electrical energy storage systems. However, they are still in an early stage of development and suffer from large voltage polarization and poor cycling performance. At present, Mg-air batteries with high rechargeability remain difficult to achieve, mainly because the discharge products [Mg(OH)2, MgO and MgO2] are thermodynamically and kinetically difficult to decompose at moderate voltage ranges. Therefore, it is crucial to optimize the reaction paths and kinetics from the electrodes to the batteries via the combination of materials design and first-principles calculations. In this review, remarkable progress is highlighted regarding the currently used materials for Mg-air batteries, including anodes, electrolytes, and cathodes. In addition, the corresponding reaction mechanisms are comprehensively surveyed. Finally, future perspectives for rechargeable Mg-air batteries with decreased voltage polarization and improved cycling performance are also described for further practical applications.

Funder

Oceanic Interdisciplinary Program of Shanghai Jiao Tong University

National Natural Science Foundation of China

Shanghai Aerospace Science and Technology Innovation Fundation

Publisher

OAE Publishing Inc.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3