Author:
Ruan Jiafeng,Sun Hao,Song Yun,Pang Yuepeng,Yang Junhe,Sun Dalin,Zheng Shiyou
Abstract
The lithium-sulfur battery is currently considered to be a promising candidate for next-generation energy storage devices. However, its commercial application is severely restricted by rapid capacity decay mainly arising from unavoidable dissolution of intermediate lithium polysulfide of the S-based cathodes. Herein, multifunctional stripped grapheme-carbon nanotubes (SG-CNT) with 1D/2D interwoven and hierarchical pore structure as a promising host to stabilize S was constructed by cheaper raw materials and a facile strategy. Based on comprehensive analysis, the interwoven network and hierarchical pores along with abundant oxidative functional groups in matrix provided large contact area with S, short transport pathway for electrons/Li-ions, sufficient space to accommodate volumetric change, and superior confinement ability for S/polysulfides, thus resulting in effectively stabilizing the S cathode with high S loading and increasing its utilization. Therefore, the S@SG-CNT cathodes exhibited a high reversible capacity of 1227 mAh g-1 at 0.1 A g-1, excellent cyclability with a capacity of 773 mAh g-1 after 500 cycles at 0.2 A g-1, and ultra-long cycling performance with capacity decay less than 0.01% per cycle at 2 A g-1. This facile strategy and unique construction of superior performance cathode provide a new avenue for next commercial application.
Funder
National Natural Science Foundation of China
Shanghai Municipal Science and Technology Commission
Innovation Program of Shanghai Municipal Education Commission
General Program of Natural Science Foundation of Shanghai
Shanghai Rising-Star Program
Postdoctoral Innovation Talents Support Program of China
Shanghai Outstanding Academic Leaders Plan
Guilin University of Electronic Technology
Cited by
41 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献