X-ray dose effects and strategies to mitigate beam damage in metal halide perovskites under high brilliance X-ray photon sources

Author:

da Silva Francisco M. C.,Szostak Rodrigo,Guaita Maria G. D.,Teixeira Verônica C.,Nogueira Ana F.,Tolentino Hélio C. N.

Abstract

Metal halide perovskites (MHP) suffer from photo-structural-chemical instabilities whose intricacy requires state-of-the-art tools to investigate their properties under various conditions. This study addresses the damage caused by focused X-ray beams on MHP through a correlative multi-technique approach. The damage after high-dose irradiation is noticeable in many ways: the loss of iodine and organic components, whose relative amount is reduced; the formation of an excavated area modifying the sample morphology; and an altered optical reflectivity indicating an optically inactive layer. The damage mechanism combines radiolysis and sputtering processes. Interestingly, the bulk underneath the excavated area maintains the initial halide proportion demonstrated by a stable photoluminescence emission energy. We also show that controlling the beam dose and environment is an excellent strategy to mitigate the dose harm. Hence, we combined a controlled X-ray dose with an inert N2 atmosphere to certify the conditions to probe MHP properties while mitigating damage efficiently. Finally, we applied optimized conditions in an X-ray ptychography experiment, reaching a 15-nm spatial resolution, an outcome that has never been attained in this class of materials.

Publisher

OAE Publishing Inc.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3