Carbon-supported single-atom catalysts for advanced rechargeable metal-air batteries

Author:

Xia Qing,Zhai Yanjie,Zhao Lanling,Wang Jun,Li Deyuan,Zhang Lili,Zhang Jintao

Abstract

To address the fossil energy crisis and environmental problems, the urgent demand for clean energy has promoted the rapid development of advanced rechargeable metal-air batteries based on the redox reaction couples of gases, such as the oxygen reduction, oxygen evolution, carbon dioxide reduction and carbon dioxide evolution reactions. High-efficiency electrocatalysts are highly desirable to enhance the conversion efficiency of these reactions for enhancing battery performance. Significant advances in single-atom catalysts (SACs) on carbon matrices have been witnessed in recent years as attractive and unique systems to improve the electrocatalytic activities for high-performance rechargeable Zn- and Li-air batteries. This review summarizes the latest achievements in the applications of carbon-supported SACs in metal-air batteries, with a particular focus on the rational design of SACs and their fundamental electrocatalytic mechanism at the atomic level. The future development and perspectives of SACs in the field of metal-air batteries are also discussed.

Funder

National Natural Science Foundation of China

Natural Scientific Foundation of Shandong Province

China Postdoctoral Science Foundation

Guangdong Basic and Applied Basic Research Foundation

Natural Science Foundation of Shandong Province

Young Scholars Program of Shandong University

Publisher

OAE Publishing Inc.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3