Recent progress on metal-organic framework derived carbon and their composites as anode materials for potassium-ion batteries

Author:

Yang Lei,Chen Jingwei,Park Sangbaek,Wang Huanlei

Abstract

Potassium-ion batteries (PIBs) are considered as promising alternatives to lithium-ion batteries (LIBs) due to their abundant potassium resources, cost-effectiveness, and comparable electrochemical performance to LIBs. However, the practical application of PIBs is hindered by the slow dynamics and large volume expansion of anode materials. Owing to their unique morphology, rich pores, abundant active sites, and tunable composition, metal-organic framework (MOF)-derived carbon and its composites have been widely studied and developed as PIB anodes. In this review, the basic configuration, performance evaluation indicators, and energy storage mechanisms of PIBs were first introduced, followed by a comprehensive summary of the research progress in MOF-derived carbon and its composites, especially the design strategies and different types of composites. Moreover, the advances of in situ characterization techniques to understand the electrochemical mechanism during potassiation/depotassiation were also highlighted, which is crucial for the directional optimization of the electrochemical performance of PIBs. Finally, the challenges and development prospects of MOF-derived carbon and its composites for PIBs are prospected. It is envisioned that this review will guide and inspire more research efforts toward advanced MOF-derived PIB anode materials in the future.

Publisher

OAE Publishing Inc.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3