Investigation of dual atom doped single-layer MoS2 for electrochemical reduction of carbon dioxide by first-principle calculations and machine-learning

Author:

Li Huidong,Deng Chaofang,Li Fuhua,Ma Mengbo,Tang Qing

Abstract

The exploration of efficient electrocatalysts for carbon dioxide reduction reaction (CO2RR) with viable activity and superior selectivity remains a great challenge. The efficiency of CO2RR over traditional transition metal-based catalysts is restricted by their inherent scaling relationships, so breaking this scaling relationship is the key to improving the catalytic performance. In this work, inspired by the recent experimental progress in the synthesis of dual atom catalysts (DACs), we reported a rational design of novel DACs with two transition metal atoms embedded in defective MoS2 with S vacancies for CO2 reduction; 21 metal dimer systems were selected, including six homonuclear catalysts (MoS2-M2, M = Cu, Fe, Ni, Mn, Cr, Co) and 15 heteronuclear catalysts (MoS2-M1M2). First-principles calculations showed that the MoS2-NiCr system not only breaks the linear relationship of key intermediates but also possesses a low overpotential of 0.58 V and superior selectivity in the process of methane generation, which can be used as a promising catalyst for methane formation from CO2 electroreduction. Notably, by combining random forest regression machine learning study, we found that the CO2RR activity of DACs is essentially controlled by some fundamental factors, such as the distance between metal centers and the number of outer electrons in the metal atoms. Our findings provide profound insights for the design of efficient DACs for CO2RR.

Publisher

OAE Publishing Inc.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3