Author:
Shi Bofeng,Zhou Yumei,Fang Daqing,Tian Yuan,Ding Xiangdong,Sun Jun,Lookman Turab,Xue Dezhen
Abstract
In addition to being determined by its chemical composition and processing conditions, the performance of a material is also affected by the variables of its service space, including temperature, pressure, and frequency. A rapid means to estimate the performance of a material in its service space is urgently required to accelerate the screening of materials with targeted performance. In the present study, a materials informatics approach is proposed to rapidly predict performance within a service space based on existing data. We utilize an active learning loop, which employs an ensemble machine learning method to predict the performance, followed by a Bayesian experimental design to minimize the number of experiments for refinement and validation. This approach is demonstrated by predicting the damping properties of a ZE62 magnesium alloy in a service space defined by frequency, strain amplitude, and temperature based on the available data for other magnesium alloys. Several utility functions that recommend a particular experiment to refine the estimates of the service space are used and compared. In particular, the standard deviation is found to reduce the prediction error most efficiently. After augmenting the database with nine new experimental measurements, the uncertainties associated with the predicted damping capacities are largely reduced. Our method allows us to forecast the properties in the service space of a given material by rapid refinement of the predictions via experiment measurements.
Funder
National Key Research and Development Program of China
National Natural Science Foundation of China
111 project 2.0
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献