Reinforcement learning methods for network-based transfer parameter selection

Author:

Guo Yue,Wang Yu,Yang I-Hsuan,Sycara Katia

Abstract

A significant challenge in self-driving technology involves the domain-specific training of prediction models on intentions of other surrounding vehicles. Separately processing domain-specific models requires substantial human resources, time, and equipment for data collection and training. For instance, substantial difficulties arise when directly applying a prediction model developed with data from China to the United States market due to complex factors such as differing driving behaviors and traffic rules. The emergence of transfer learning seems to offer solutions, enabling the reuse of models and data to enhance prediction efficiency across international markets. However, many transfer learning methods require a comparison between source and target data domains to determine what can be transferred, a process that can often be legally restricted. A specialized area of transfer learning, known as network-based transfer, could potentially provide a solution. This approach involves pre-training and fine-tuning "student" models using selected parameters from a "teacher" model. However, as networks typically have a large number of parameters, it raises questions about the most efficient methods for parameter selection to optimize transfer learning. An automatic parameter selector through reinforcement learning has been developed in this paper, named "Automatic Transfer Selector via Reinforcement Learning". This technique enhances the efficiency of parameter selection for transfer prediction between international self-driving markets, in contrast to manual methods. With this innovative approach, technicians are relieved from the labor-intensive task of testing each parameter combination, or enduring lengthy training periods to evaluate the impact of prediction transfer. Experiments have been conducted using a temporal convolutional neural network fully trained with the data from the Chinese market and one month's US data, focusing on improving the training efficiency of specific driving scenarios in the US. Results show that the proposed approach significantly improves the prediction transfer process.

Publisher

OAE Publishing Inc.

Reference29 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Mejora de las soluciones del problema del viajante múltiple mediante técnicas de aprendizaje automático y optimización de Harris Hawks;Revista Científica de Sistemas e Informática;2024-07-10

2. A Fatigue Driving Recognition Method Based on WOA-Attention-GRU;2023 2nd International Conference on Robotics, Artificial Intelligence and Intelligent Control (RAIIC);2023-08-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3