Heterogeneous multi-agent task allocation based on graph neural network ant colony optimization algorithms

Author:

Ma Ziyuan,Gong Huajun

Abstract

Heterogeneous multi-agent task allocation is a key optimization problem widely used in fields such as drone swarms and multi-robot coordination. This paper proposes a new paradigm that innovatively combines graph neural networks and ant colony optimization algorithms to solve the assignment problem of heterogeneous multi-agents. The paper introduces an innovative Graph-based Heterogeneous Neural Network Ant Colony Optimization (GHNN-ACO) algorithm for heterogeneous multi-agent scenarios. The multi-agent system is composed of unmanned aerial vehicles, unmanned ships, and unmanned vehicles that work together to effectively respond to emergencies. This method uses graph neural networks to learn the relationship between tasks and agents, forming a graph representation, which is then integrated into ant colony optimization algorithms to guide the search process of ants. Firstly, the algorithm in this paper constructs heterogeneous graph data containing different types of agents and their relationships and uses the algorithm to classify and predict linkages for agent nodes. Secondly, the GHNN-ACO algorithm performs effectively in heterogeneous multi-agent scenarios, providing an effective solution for node classification and link prediction tasks in intelligent agent systems. Thirdly, the algorithm achieves an accuracy rate of 95.31% in assigning multiple tasks to multiple agents. It holds potential application prospects in emergency response and provides a new idea for multi-agent system cooperation.

Publisher

OAE Publishing Inc.

Reference31 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Multi-Criteria-based Graph Neural Networks for a Medical Emergency Response System;2024 International Conference on Inventive Computation Technologies (ICICT);2024-04-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3