Author:
Taher Heba,Grasso Vincent,Tawfik Sherifa,Gumbs Andrew
Abstract
Aim: Artificial intelligence (AI) is rapidly evolving in healthcare worldwide, especially in surgery. This article reviews important terms used in machine learning and the challenges of deep learning in surgery. Methods: A review of the English literature was carried out focused on the terms “challenges of deep learning” and “surgery” using Medline and PubMed between 2018 and 2022. Results: In total, 54 articles discussed the challenges of deep learning in general. We include 25 articles from various surgical specialties discussing challenges corresponding to their respective specialties. Conclusion: The increased utilization of AI in surgery is faced with a wide variety of technical, ethical, clinical, and business-related challenges. The best way to expedite its expansion in surgery in the safest and most cost-efficient manner is by ensuring that as many surgeons as possible have a clear understanding of basic AI concepts and how they can be applied to the preoperative, intraoperative, postoperative, and long-term follow-up phases of the surgical patient care.
Cited by
34 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献