Digital twins as a unifying framework for surgical data science: the enabling role of geometric scene understanding

Author:

Ding HaoORCID,Seenivasan Lalithkumar,Killeen Benjamin D.,Cho Sue Min,Unberath MathiasORCID

Abstract

Surgical data science is devoted to enhancing the quality, safety, and efficacy of interventional healthcare. While the use of powerful machine learning algorithms is becoming the standard approach for surgical data science, the underlying end-to-end task models directly infer high-level concepts (e.g., surgical phase or skill) from low-level observations (e.g., endoscopic video). This end-to-end nature of contemporary approaches makes the models vulnerable to non-causal relationships in the data and requires the re-development of all components if new surgical data science tasks are to be solved. The digital twin (DT) paradigm, an approach to building and maintaining computational representations of real-world scenarios, offers a framework for separating low-level processing from high-level inference. In surgical data science, the DT paradigm would allow for the development of generalist surgical data science approaches on top of the universal DT representation, deferring DT model building to low-level computer vision algorithms. In this latter effort of DT model creation, geometric scene understanding plays a central role in building and updating the digital model. In this work, we visit existing geometric representations, geometric scene understanding tasks, and successful applications for building primitive DT frameworks. Although the development of advanced methods is still hindered in surgical data science by the lack of annotations, the complexity and limited observability of the scene, emerging works on synthetic data generation, sim-to-real generalization, and foundation models offer new directions for overcoming these challenges and advancing the DT paradigm.

Publisher

OAE Publishing Inc.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3