Author:
Shakir Taner,Kader Rawen,Bhan Chetan,Chand Manish
Abstract
The medical technological revolution has transformed the nature with which we deliver care. Adjuncts such as artificial intelligence and machine learning have underpinned this. The applications to the field of endoscopy are numerous. Malignant polyps represent a significant diagnostic dilemma as they lie in an area in which mischaracterisation may mean the difference between an endoscopic procedure and a formal bowel resection. This has implications for patients’ oncological outcomes, morbidity and mortality, especially if post-procedure histopathology upstages disease. We have made significant strides with the applications of artificial intelligence to colonoscopic detection. Deep learning algorithms are able to be created from video and image databases. These have been applied to traditional, human-derived, classification methods, such as Paris or Kudo, with up to 93% accuracy. Furthermore, multimodal characterisation systems have been developed, which also factor in patient demographics and colonic location to provide an estimation of invasion and endoscopic resectability with over 90% accuracy. Although the technology is still evolving, and the lack of high-quality randomised controlled trials limits clinical usability, there is an exciting horizon upon us for artificial intelligence-augmented endoscopy.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Role of artificial intelligence in colorectal cancer;Artificial Intelligence in Gastrointestinal Endoscopy;2024-06-08
2. Scoping review: autonomous endoscopic navigation;Artificial Intelligence Surgery;2023-12-11