Author:
Wagner Martin,Schulze André,Haselbeck-Köbler Michael,Probst Pascal,Brandenburg Johanna M.,Kalkum Eva,Majlesara Ali,Ramouz Ali,Klotz Rosa,Nickel Felix,März Keno,Bodenstedt Sebastian,Dugas Martin,Maier-Hein Lena,Mehrabi Arianeb,Speidel Stefanie,Büchler Markus W.,Müller-Stich Beat Peter
Abstract
Aim: We systematically review current clinical applications of artificial intelligence (AI) that use machine learning (ML) methods for decision support in surgical oncology with an emphasis on clinical translation. Methods: MEDLINE, Web of Science, and CENTRAL were searched on 19 January 2021 for a combination of AI and ML-related terms, decision support, and surgical procedures for abdominal malignancies. Data extraction included study characteristics, description of algorithms and their respective purpose, and description of key steps for scientific validation and clinical translation. Results: Out of 8302 articles, 107 studies were included for full-text analysis. Most of the studies were conducted in a retrospective setting (n = 105, 98%), with 45 studies (42%) using data from multiple centers. The most common tumor entities were colorectal cancer (n = 35, 33%), liver cancer (n = 21, 20%), and gastric cancer (n = 17, 16%). The most common prediction task was survival (n = 36, 34%), with artificial neural networks being the most common class of ML algorithms (n = 52, 49%). Key reporting and validation steps included, among others, a complete listing of patient features (n = 95, 89%), training of multiple algorithms (n = 73, 68%), external validation (n = 13, 12%), prospective validation (n = 2, 2%), robustness in terms of cross-validation or resampling (n = 89, 83%), treatment recommendations by ML algorithms (n = 9, 8%), and development of an interface (n = 12, 11%). Conclusion: ML for decision support in surgical oncology is receiving increasing attention with promising results, but robust and prospective clinical validation is mostly lacking. Furthermore, the integration of ML into AI applications is necessary to foster clinical translation.
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献