Long-term reprojection loss for self-supervised monocular depth estimation in endoscopic surgery

Author:

Shi Xiaowei,Cui Beilei,Clarkson Matthew J.,Islam Mobarakol

Abstract

Aim: Depth information plays a key role in enhanced perception and interaction in image-guided surgery. However, it is difficult to obtain depth information with monocular endoscopic surgery due to a lack of reliable cues for perceiving depth. Although there are reprojection loss-based self-supervised learning techniques to estimate depth and pose, the temporal information from the adjacent frames is not efficiently utilized to handle occlusion in surgery. Methods: We design long-term reprojection loss (LT-RL) self-supervised monocular depth estimation techniques by integrating longer temporal sequences into reprojection to learn better perception and to address occlusion artifacts in image-guided laparoscopic and robotic surgery. For this purpose, we exploit four temporally adjacent source frames before and after the target frame, where conventional reprojection loss uses two adjacent frames. The pixels that are visible in the target frame but occluded in the immediate two adjacent frames will produce the inaccurate depth but a higher chance to appear in the four adjacent frames during the calculation of minimum reprojection loss. Results: We validate LT-RL on the benchmark surgical datasets of Stereo correspondence and reconstruction of endoscopic data (SCARED) and Hamlyn to compare the performance with other state-of-the-art depth estimation methods. The experimental results show that our proposed technique yields 2%-4% better root-mean-squared error (RMSE) over the baselines of vanilla reprojection loss. Conclusion: Our LT-RL self-supervised depth and pose estimation technique is a simple yet effective method to tackle occlusion artifacts in monocular surgical video. It does not add any training parameters, making it flexible for integration with any network architecture and improving the performance significantly.

Publisher

OAE Publishing Inc.

Reference18 articles.

1. Digging Into Self-Supervised Monocular Depth Estimation

2. Unsupervised Monocular Depth Estimation with Left-Right Consistency

3. HR-Depth: High Resolution Self-Supervised Monocular Depth Estimation

4. Unsupervised CNN for Single View Depth Estimation: Geometry to the Rescue

5. Jaderberg M, Simonyan K, Zisserman A, Kavukcuoglu K. Spatial transformer networks. 2015.. Available from: https://proceedings.neurips.cc/paper_files/paper/2015/file/33ceb07bf4eeb3da587e268d663aba1a-Paper.pdf. [Last accessed on 5 Sep 2024]

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3