Long-term efficacy and safety of cardiac genome editing for catecholaminergic polymorphic ventricular tachycardia

Author:

Moore Oliver M.,Aguilar-Sanchez Yuriana,Lahiri Satadru K.,Hulsurkar Mohit M.,Navarro-Garcia J. Alberto,Word Tarah A.,Keefe Joshua A.,Barazi Dean,Munivez Elda M.,Moore Charles T.,Parthasarathy Vaidya,Davidson Jaysón,Lagor William R.,Park So Hyun,Bao Gang,Miyake Christina Y.,Wehrens Xander H. T.ORCID

Abstract

Introduction: Heterozygous autosomal-dominant single nucleotide variants in RYR2 account for 60% of cases of catecholaminergic polymorphic ventricular tachycardia (CPVT), an inherited arrhythmia disorder associated with high mortality rates. CRISPR/Cas9-mediated genome editing is a promising therapeutic approach that can permanently cure the disease by removing the mutant RYR2 allele. However, the safety and long-term efficacy of this strategy have not been established in a relevant disease model. Aim: The purpose of this study was to assess whether adeno-associated virus type-9 (AAV9)-mediated somatic genome editing could prevent ventricular arrhythmias by removal of the mutant allele in mice that are heterozygous for Ryr2 variant p.Arg176Gln (R176Q/+). Methods and Results: Guide RNA and SaCas9 were delivered using AAV9 vectors injected subcutaneously in 10-day -old mice. At 6 weeks after injection, R176Q/+ mice had a 100% reduction in ventricular arrhythmias compared to controls. When aged to 12 months, injected R176Q/+ mice maintained a 100% reduction in arrhythmia induction. Deep RNA sequencing revealed the formation of insertions/deletions at the target site with minimal off-target editing on the wild-type allele. Consequently, CRISPR/SaCas9 editing resulted in a 45% reduction of total Ryr2 mRNA and a 38% reduction in RyR2 protein. Genome editing was well tolerated based on serial echocardiography, revealing unaltered cardiac function and structure up to 12 months after AAV9 injection. Conclusion: Taken together, AAV9-mediated CRISPR/Cas9 genome editing could efficiently disrupt the mutant Ryr2 allele, preventing lethal arrhythmias while preserving normal cardiac function in the R176Q/+ mouse model of CPVT.

Publisher

OAE Publishing Inc.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3