Hierarchical metal–organic framework nanoarchitectures for catalysis

Author:

Zhao Bin,Han Ji,Liu Bohan,Zhang Song Lin,Guan Buyuan

Abstract

Metal–organic frameworks (MOFs) have garnered significant attention in the field of catalysis due to their unique advantages such as diverse coordination geometry, variable metal nodes, and organic linkers, facilitating precise structural and compositional control for achieving programmable catalytic functionalities. Although their inherent microporous structure could provide excellent shape selectivity during catalysis, it typically impedes the mass transfer process, thereby reducing the use of internal active sites and overall catalytic efficiency. Additionally, employing single MOFs as catalysts presents challenges in achieving complex catalytic reactions that require multifunctional active sites. In recent years, considerable research efforts have focused on designing and constructing hierarchical nanostructured MOFs to alleviate substrate diffusion limitations by introducing secondary nanopores, shortening diffusion distances via the construction of low-dimensional nanoarchitectures, and constructing multifunctional catalysts by integrating distinct MOFs with suitable functions. This review provides a comprehensive overview of the design, synthesis methods, and formation mechanisms of MOF-based hierarchical nanostructures in recent years. Subsequently, it further highlights their applications in thermal catalysis, electrocatalysis, and photocatalysis, along with the relationship between their hierarchical nanostructures and catalytic performances. Finally, it provides an outlook on the challenges and potential development directions of hierarchically structured MOF nanocatalysts.

Publisher

OAE Publishing Inc.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3