Neutronic Assessment of High-Temperature Gas-Cooled Thorium Burner using Monte Carlo Calculation Method with Full Core Model

Author:

ÇİFCİ Ahmet1ORCID,ACIR Adem1

Affiliation:

1. GAZİ ÜNİVERSİTESİ

Abstract

In this study, the effective reactivity and burnup analyses have been performed for heterogeneous three-dimensional high-temperature gas-cooled thorium reactor (HTGR) which has 60 MWth full core geometry by using continuous-energy multi-purpose three-dimensional Monte Carlo particle transport Serpent code with ENDF/ B-VII data libraries. Nuclear fuel have been selected as 50 % ThO2+50% RG-PuO2. Firstly, effective reactivity for three different qualities of graphite for operation period have been determined. The effective reactivity showed better performance with increasing densities of graphite. Secondly, it has been also examined to ZrC and SiC cladding materials effect on the effective reactivity. It is observed that SiC has a positive effect on reactivity compared to ZrC. As a results, the full core life low-power thorium-burner HTGR have been calculated as up to ~4500 days depending on the graphite material whereas, the corresponding burn−ups came out to be ~ 189 GWd/ton, for end of life.

Publisher

Gazi Universitesi Fen Bilimleri Dergisi Part C: Tasarim ve Teknoloji

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3