Abstract
In this study, the effective reactivity and burnup analyses have been performed for heterogeneous three-dimensional high-temperature gas-cooled thorium reactor (HTGR) which has 60 MWth full core geometry by using continuous-energy multi-purpose three-dimensional Monte Carlo particle transport Serpent code with ENDF/ B-VII data libraries. Nuclear fuel have been selected as 50 % ThO2+50% RG-PuO2. Firstly, effective reactivity for three different qualities of graphite for operation period have been determined. The effective reactivity showed better performance with increasing densities of graphite. Secondly, it has been also examined to ZrC and SiC cladding materials effect on the effective reactivity. It is observed that SiC has a positive effect on reactivity compared to ZrC. As a results, the full core life low-power thorium-burner HTGR have been calculated as up to ~4500 days depending on the graphite material whereas, the corresponding burn−ups came out to be ~ 189 GWd/ton, for end of life.
Publisher
Gazi Universitesi Fen Bilimleri Dergisi Part C: Tasarim ve Teknoloji
Reference19 articles.
1. 1. IAEA, (2003), Potential of Thorium Based Fuel Cycles to Constrain Plutonium and Reduce Long Lived Waste Toxicity, IAEA-TECDOC-1349, International Atomic Energy Agency.
2. 2. Şahin, S., Yıldız, K., Acır, A., (2004a), Power Flattening in the Fuel Bundle of a CANDU Reactor, Nuclear Engineering and Design, 232(1): 7 – 18.
3. 3. Şahin, S., K. Yıldız, H. M. Şahin, A. Acır (2006a), “Investigation of CANDU Reactors as a Thorium Burner”, Energy Conversion and Management, Vol. 47, nos. 13 - 14, pp. 1661 – 1675.
4. 4. Sahin, S; Sahin, HM and Acir, A. (2010). Utilization of TRISO fuel with reactor grade plutonium in CANDU reactors, 240 (8) , pp.2066-2074.
5. 5. Sahin, S; Sahin, HM and Acir, A. (2010). Criticality and burn up evolutions of the Fixed Bed Nuclear Reactor with alternative fuels, Energy Conversion and Management, 51 (9) , pp.1781-1787
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献