Taguchi ve ANOVA Analizi Kullanılarak Fotovoltaik Enerji Santrallerinde Dizi Tasarımının Optimizasyonu

Author:

ÇİNİCİ Oğuz Kaan1ORCID,ACIR Adem1ORCID

Affiliation:

1. GAZİ ÜNİVERSİTESİ, TEKNOLOJİ FAKÜLTESİ, ENERJİ SİSTEMLERİ MÜHENDİSLİĞİ BÖLÜMÜ, ENERJİ SİSTEMLERİ MÜHENDİSLİĞİ PR.

Abstract

Fossil fuels, predominant in fulfilling current energy demands, are implicated in global warming, prompting a global shift towards renewable energy sources. Among these, photovoltaic (PV) solar power plants have garnered significant attention, experiencing a rapid surge in installed power capacity. However, a notable drawback of PV solar power plants is their considerable spatial footprint, emphasizing the pivotal role of efficient space utilization and shading mitigation in their design. Notably, pitch distance, array design, and PV type emerge as critical parameters influencing the performance of these power plants during installation. In the present study, eight distinct PV solar power plant designs were conceptualized, incorporating four different PV array configurations (2P-3P-2L-3L) and two PV types (monofacial-bifacial), each with specified orientations (portrait-landscape). Other parameters were held constant across designs. Leveraging PVsyst software, simulations were conducted for each design, yielding crucial performance metrics, including the annual energy output delivered to the grid (E-grid), performance ratio (PR), and associated CO2 emissions. Subsequently, a Taguchi analysis facilitated optimization based on these results. The outcome of this analysis identified the optimal PV array design as 3D and the optimal PV type as bifacial. Further insight was gained through an ANOVA analysis, revealing the substantial contributions of parameters to overall variability. Specifically, PV type exhibited a significant contribution of 65.27%, while PV array configuration contributed 34.72% to the observed variability in plant performance. These findings not only enhance the understanding of PV power plant design intricacies but also underscore the paramount significance of array design in achieving heightened efficiency and sustainability.

Publisher

Gazi Universitesi Fen Bilimleri Dergisi Part C: Tasarim ve Teknoloji

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3