Investigation of The Weldability of PLA Plus Sheets with Different Infill Ratios by Friction Stir Welding

Author:

Anaç Nergizhan1ORCID,Koçar Oğuz2ORCID,Altuok Cihan2ORCID

Affiliation:

1. BÜLENT ECEVİT ÜNİVERSİTESİ, MÜHENDİSLİK FAKÜLTESİ, MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ

2. ZONGULDAK BÜLENT ECEVİT ÜNİVERSİTESİ, MÜHENDİSLİK FAKÜLTESİ, MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ

Abstract

Although the joining processes of plastics are typically carried out through welding, adhesive bonding, or mechanical fastening elements, the production of complex and large parts often requires welding technology. In this study, the effect of part infill ratio (20%, 40%, 60%, 80%, and 100%) on the welding strength of 3D printed PLA Plus parts was evaluated through friction stir welding (FSW). Tensile tests and temperature measurements were carried out to examine the effects of friction stir welding process parameters (feed rate: 50 and 100 mm/min and rotational speed: 1000 and 1500 rpm) on the structure and mechanical properties of friction stir welding. Moreover, visual inspections were performed to detect defects in the weld zone. Compared to the PLA Plus samples given as reference according to the infill ratios, the highest welding strengths were obtained at 80%, 60% and 100% infill ratios (29.4 MPa, 17.47 MPa and 41.12 MPa and 112.38%, 97.48%, 87.04% efficiency, respectively). As a result, it was determined that at low infill ratios (20% and 40%), the weld quality was negatively affected, and a surface tunnel defect occurred in the weld zone. It has been determined that the weld quality in FSW is significantly affected by the temperature occurring during the process. The study has shown that parts printed at different infill ratios, especially on a 3D printer, can be combined with friction stir welding and that the efficiency of the welding process can be increased by optimizing the infill ratios.

Publisher

Gazi Universitesi Fen Bilimleri Dergisi Part C: Tasarim ve Teknoloji

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. 3B YAZICILAR İÇİN SÜREKLİ TAKVİYELİ FİLAMENT ÜRETİMİNE UYGUN KALIP TASARIMI;International Journal of 3D Printing Technologies and Digital Industry;2024-08-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3