Investigation of The Effect of Semi-Solid Temperatures and Holding Times at Isothermal Range On Microstructure of AZ31 Mg Alloy

Author:

AKGÜN Bahadır1ORCID,KOCATEPE Kadir1ORCID

Affiliation:

1. GAZİ ÜNİVERSİTESİ

Abstract

Mg alloys have poor formability due to their hexagonal tightly packed (HCP) crystal structure, low active shear system at room temperature, and anisotropic behavior in polycrystalline structure. While this situation hindered the development and commercialization of Mg alloys to some extent in the past, today developments in machining, liquid forming and semi-solid forming technology have removed these obstacles. Semi-solid forming of alloys has been the subject of intense R&D since it was discovered in the 1970s. In the semi-solid forming method, it is aimed to obtain ideal microstructure of the alloy, including excellent fluidity, appropriate flow control, adjustable viscosity and controllable grain morphology, thanks to equiaxed spherical solid particles surrounded by liquid. In this study, it is aimed to achieve the spherical microstructure required for the semi-solid shaping of the extruded AZ31 Mg alloy by heating to semi-solid temperatures and isothermal holding in the semi-solid temperature range. To accomplish this objective, rapid heating in the induction coil and controlled holding in the isothermal temperature range were applied to the alloy. Heating the extruded AZ31 Mg alloy to a semi-solid temperature (565-630°C) and subsequently rapid cooling processes lead to many intermetallic Mg17Al12(γ) compounds with heterogeneous distribution both in the equiaxed primary Mg(α) grains and at the grain boundaries as well as a very little eutectic at the grain boundaries. As the semi-solid temperature value increased, the degree of spheroidization increased. However, it was found that the grain growth reached a maximum at one point and there was no significant change in the shape factor as a result of controlled holding time.

Funder

Gazi Üniversitesi BİLİMSEL ARAŞTIRMA PROJELERİ KOORDİNASYON BİRİMİ

Publisher

Gazi Universitesi Fen Bilimleri Dergisi Part C: Tasarim ve Teknoloji

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3