NUMERICAL INVESTIGATION OF SUPERSONIC FLOW SEPARATION IN THRUST-OPTIMIZED CONTOUR ROCKET NOZZLE

Author:

Khaled Bensayah,Khadidja Kamri

Abstract

The difficulties associated with thrust-optimized contour nozzles have led to significant advances in our knowledge of the physical phenomena associated with flow separation. In this study, a fully implicit scheme is implemented using a combined weight function for splitting the flux to analyze the shock patterns in the optimized contour (TOC) that occur during the process of separation, leading to free (FSS) or restricted (RSS) shock separation. The switching FSS/RSS hysteresis at startup and shutdown is also investigated. To better understand and validate the findings and study the properties of the oscillating flow during the start-up procedure, an axisymmetric two-dimensional numerical simulation was performed for the TOC nozzle. A code was developed to solve the unsteady Navier-Stokes equations for compressible nozzle flow with boundary layer/shock wave interactions with the implementation of a full RSM-Omega turbulence model. These findings were used to analyze the separation structures, shock wave interactions, and hysteresis phenomena.

Publisher

Faculty of Engineering, University of Kragujevac

Subject

Computational Mechanics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3