THERMAL ANALYSIS OF LAMINAR WATER FLOW OVER A BACKWARD FACING CHANNEL WITH CARBON NANOPARTICLES

Author:

Saha Sandip,Ramachandra Prasad Vallampati,Anwar Bég Osman

Abstract

In the last few years, the thermo-hydraulic simulation of nanofluid flow bifurcation phenomena has become of great interest to researchers and a useful tool in many engineering applications. FVM has been employed in this article to numerically explore the laminar water flow over a backward facing channel with or without carbon nanoparticles (CN). The problem formulated in this paper has been solved by considering the effects of nanoparticle weight percentages (𝑤%), such as 0.00, 0.12, and 0.25 for different Reynolds number (𝑅𝑒). Nusselt number distribution (𝑁𝑢(𝑥)), coefficient of skin friction (𝐶𝑓), characteristics of pressure drop (Δ𝑝), velocity contours, static temperature, pumping power (𝑃𝑝) and thermal resistance factor (𝑅) have been investigated to know the behavior of thermo-hydraulic flow bifurcation phenomena. The present study shows that the surface temperature and coefficient of heat transfer can be reduced due to the effect of 𝑅𝑒 or w%. For different w%, it has been found that in the rise in the values of 𝑅𝑒 causes the increase of vortex length and as a result velocity gradient and Δ𝑝 arises. Furthermore, it has also been studied that the enhancement of 𝑅𝑒 causes the increaseof 𝑃𝑝 and Δ𝑝.

Publisher

Faculty of Engineering, University of Kragujevac

Subject

Computational Mechanics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3