PHYSICS-INFORMED NEURAL NETWORKS FOR ELASTIC PLATE PROBLEMS WITH BENDING AND WINKLER-TYPE CONTACT EFFECTS

Author:

Muradova Aliki D.,Stavroulakis Georgios E.

Abstract

Kirchhoff plate bending and Winkler-type contact problems with different boundary conditions are solved with the use of physics-informed neural networks (PINN). The PINN is built on the base of mechanics laws and deep learning. The idea of the technique includes fitting the governing partial differential equations at collocation points and then training the neural network with the use of optimization techniques. Training of the neural network is performed by numerical optimization using Adam’s method and the L-BFGS (Limited- Broyden–Fletcher–Goldfarb–Shanno) algorithm. The error loss function and the computational error of the approximate solution (output of the neural network) of the bending problem and contact problem with Winkler type elastic foundation are shown on examples. The predictions of the NN are investigated for different values of the foundation’s constants. The effectiveness of the proposed framework is demonstrated through numerical experiments with different numbers of epochs, hidden layers, neurons and numbers of collocation points. The Tensorflow deep learning and scientific computing package of Python is used through a Jupyter Notebook.

Publisher

Faculty of Engineering, University of Kragujevac

Subject

Computational Mechanics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3