EXPERIMENTAL ELECTROCHEMOTHERAPY USING NOVEL DESIGN SINGLE NEEDLE DEVICE

Author:

Cvetković Aleksandar,Cvetković Danijela,Milašinović Danko,Jovičić Nemanja,Miailović Nikola,Nikolić Dalibor,Mitrović Slobodanka,Filipović Nenad

Abstract

This is a feasibility study for the application of a novel concept of single-needle device for localized chemotherapy. Systemic chemotherapy has numerous and severe side effects. To conduct localized (electro)chemotherapy, we designed a novel device that does not currently exist on the market. Electrochemotherapy is based on the cell membranes temporary or permanent permeabilization using an electric current of defined characteristics. Electroporation can be reversible, when after a period of opened pores and membrane permeability increasing, membranes and cells return to their original state without damage. Electroporation can be an irreversible process when the pores on the membrane remain permanently open, electrolyte imbalance occurs resulting in cell death. Electrochemotherapy involves a combination of cytostatics and reversible electroporation, when pores on the cell membrane are temporarily opened and, during that short period, a large amount of cytostatic is entered into the cell, which is a macromolecule that would not normally penetrate the cell. After closing the pores, the cytostatic remains trapped in the cell in large quantities, multiplying its effect. In this paper, we present a feasibility study of electroporation application in irreversible mode without the use of cytostatics. Fresh porcine liver tissue was used to show that the constructed equipment was effective, thus opening the way for further investigations using reversible electroporation with the application of cytostatics, which would represent localized electrochemotherapy. We penetrated the virtual tumor area (liver metastases) with a specially designed needle with electrodes that generate an electric field and apply electroporation in the target tissue. We have shown that the constructed novel design single needle equipment for electroporation is effective on the experimental model of isolated porcine liver. Further steps in our study will be the testing of electrochemotherapy in an experimental animal model in vivo.

Publisher

Faculty of Engineering, University of Kragujevac

Subject

Computational Mechanics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3