Single-Image Building Height Estimation Using EfficientNet: A Simplified, Scalable Approach

Author:

Olson Alexander W1ORCID,Saxe Shoshanna1ORCID

Affiliation:

1. University of Toronto

Abstract

We present a novel approach for estimating building heights using single street-level images. The method employs EfficientNet, a state-of-the-art neural network, to eliminate the need for additional data like street maps. We compare this new method with existing techniques, focusing on accuracy evaluated through metrics like Mean Absolute Error (MAE). The model is pre-trained on the Cityscapes dataset and fine-tuned on images from Toronto’s 3D Massing dataset. It demonstrates strong accuracy, with an MAE of 1.21 meters, outperforming traditional methods.

Publisher

Network Design Lab - Transport Findings

Reference7 articles.

1. Building height estimation using street-view images, deep-learning, contour processing, and geospatial data;Ala'a Al-Habashna;2021 18th Conference on Robots and Vision (CRV),2021

2. The cityscapes dataset for semantic urban scene understanding;Marius Cordts;Proceedings of the IEEE conference on computer vision and pattern recognition,2016

3. An algorithm to estimate building heights from google street-view imagery using single view metrology across a representational state transfer system;Elkin Díaz;SPIE Proceedings,2016

4. EfficientNet: Rethinking model scaling for convolutional neural networks;Mingxing Tan;36th International Conference on Machine Learning, ICML 2019,2019

5. EfficientNetV2: Smaller models and faster training;Mingxing Tan;Proceedings of Machine Learning Research,2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3